skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laramée, Antoine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Compressed ultrafast photography (CUP) is an emerging potent technique that allows imaging a nonrepeatable or difficult‐to‐produce transient event in a single shot. Despite many recent advances, existing CUP techniques operate only at visible and near‐infrared wavelengths. In addition, spatial encoding via a digital micromirror device (DMD) in CUP systems often limits its field of view and imaging speeds. Finally, conventional reconstruction algorithms have limited control of the reconstruction process to further improve the image quality in the recovered datacubes of the scene. To overcome these limitations, this article reports a single‐shot UV‐CUP that exhibits a sequence depth of up to 1500 frames with a size of 1750 × 500 pixels at an imaging speed of 0.5 trillion frames per second. A patterned photocathode is integrated into a streak camera, which overcomes the previous restrictions in DMD‐based spatial encoding and improves the system's compactness. Meanwhile, the plug‐and‐play alternating direction method of multipliers algorithm is implemented to CUP's image reconstruction to enhance reconstructed image quality. UV‐CUP's single‐shot ultrafast imaging ability is demonstrated by recording UV pulses transmitting through various spatial patterns. UV‐CUP is expected to find many applications in both fundamental and applied science. 
    more » « less